Dispersion Interactions from the Exchange-Hole Dipole Moment.

Alberto Otero-de-la-Roza and Erin R. Johnson

School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
$$E_{\text{disp}} = -\frac{1}{2} \sum_{ij} \frac{C_6 f_6(R_{ij})}{R_{ij}^6} + \left[\frac{C_8 f_8(R_{ij})}{R_{ij}^8} + \frac{C_{10} f_6(R_{ij})}{R_{ij}^{10}} + \ldots \right]$$

comes from perturbation theory:

$$E^{(2)} = \frac{\langle \hat{V}_{\text{int}}^2 \rangle}{\Delta E}$$

where:

- Interaction between neutral fragments (classical electrostatic interactions already captured at semilocal level).
- Asymptotic expression.

The exchange-hole model

\[
h_{x\sigma}(1, 2) = -\frac{|\rho_{1\sigma}(1, 2)|^2}{\rho_{1\sigma}(1)}
\]

- Probability of exclusion of same-spin electron.
- On-top depth condition: \(h_{x\sigma}(1, 1) = -\rho_{1\sigma}(1) \)
- Normalization: \(\int h_{x\sigma}(1, 2) d2 = -1 \) for all \(1 \).
- \(\rho_{1\sigma}(1, 2) = \sum_i \psi_i^*(1)\psi_i(2) \)
The exchange-hole model

- **Model for dispersion:** interaction of electron-hole dipoles.
- **Dipole:** $d_{x\sigma}(r) = \int r' h_{x\sigma}(r, r') dr' - r$
- **Assumption:** dipole oriented to nearest nucleus.

$$\langle M^2_i \rangle_i = \sum_\sigma \int \omega_i(r) \rho_\sigma(r) [r_i^l - (r_i - d_{X\sigma})]^2 dr.$$

The Becke-Roussel model of exchange-hole

- **Becke-Roussel model** of h_x.
 (PRA 39 (1989) 3761)

Parameters (A,a,b) obtained:
- Normalization
- Value at reference point.
- Curvature at reference point
 (reqs. kinetic energy density).

Advantages:
1. Semilocal model of the dipole ($d_x = b$).
2. XDM dispersion model \rightarrow meta-GGA.

The XDM equations: interaction coefficients

Multipole moments

\[\langle M^2 \rangle_i = \sum_\sigma \int \omega_i(r) \rho_\sigma(r) \left[r^l_i - (r_i - d_{X\sigma})^l \right]^2 dr \]

use Hirshfeld atomic partition:

\[\omega_i(r) = \frac{\rho_{i\text{at}}(r)}{\sum_j \rho_{j\text{at}}(r)} \]

Non-empirical dispersion coefficients. \textit{n-body and any order}. For instance:

\[C_{6,ij} = \frac{\alpha_i \alpha_j \langle M^2 \rangle_i \langle M^2 \rangle_j}{\langle M^2 \rangle_i \alpha_j + \langle M^2 \rangle_j \alpha_i} \]

We include: two-body terms \(C_6, C_8 \) and \(C_{10} \).

Implementation for molecules

XDM implemented post-\textbf{Gaussian 09} using the \texttt{postg} program. Also \texttt{nwchem} (available upon request).

From the wfn file, \texttt{postg} gives:

- XDM dispersion coefficients, volumes, polarizabilities
- XDM dispersion energy
- forces for geometry optimization (fixed coefficients)
- second derivatives for frequencies
- Hirshfeld charges

Download \texttt{postg} from the XDM page at:

\url{http://faculty1.ucmerced.edu/ejohnson29}

Implementation for solids

- **PS/PW (Quantum ESPRESSO)**

- Solids – Uniform 3D grid:
 - $d_{x\sigma}$, valence τ, ρ.
 - ω_i, all-electron ρ, ρ_{at}.

- Computational cost.
 - Comparable to DFT-D.
 - E_{disp} fast compared to E_{DFT}.

- Optimization: atomic forces and stresses.

<table>
<thead>
<tr>
<th>n_{grid}</th>
<th>64</th>
<th>80</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_6 (C-C)</td>
<td>22.300</td>
<td>22.425</td>
<td>22.426</td>
</tr>
<tr>
<td>C_6 (O-O)</td>
<td>11.580</td>
<td>11.627</td>
<td>11.627</td>
</tr>
<tr>
<td>E_{disp} (Ry)</td>
<td>-0.062965</td>
<td>-0.063374</td>
<td>-0.063374</td>
</tr>
</tbody>
</table>

Damping function parametrization

\[E_{\text{disp}} = \frac{1}{2} \sum_{ij} \frac{C_6f_6(R_{ij})}{R_{ij}^6} + \left[\frac{C_8f_8(R_{ij})}{R_{ij}^8} + \frac{C_{10}f_6(R_{ij})}{R_{ij}^{10}} + \ldots \right] \]

\[f_n(R_{ij}) = \frac{R_{ij}^n}{R_{ij}^n + (a_1 R_{ij,c} + a_2)^n} \]

Kannemann-Becke 65-set.

Supercell calculations.
Parametrization set

49 gas-phase dimers from Kannemann and Becke; JCTC 6 (2010) 1081.

- noble gases
- dispersion
- π-stacking
- dipole - induced dipole
- mixed
- dipole - dipole
- hydrogen-bonding
Statistics of the fit (solids)

Statistics for supercell (PS/PW) and Gaussian calculations.

<table>
<thead>
<tr>
<th>Training set (KB49)</th>
<th>B86bPBE</th>
<th>PW86PBE</th>
<th>BLYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>0.684</td>
<td>0.407</td>
<td>0.934</td>
</tr>
<tr>
<td>(a_2(\text{Å}))</td>
<td>1.368</td>
<td>2.415</td>
<td>0.965</td>
</tr>
<tr>
<td>MAE (kcal/mol)</td>
<td>0.41</td>
<td>0.46</td>
<td>0.42</td>
</tr>
<tr>
<td>MAPE</td>
<td>11.3</td>
<td>13.8</td>
<td>11.8</td>
</tr>
</tbody>
</table>

S22

| MAE (kcal/mol) | 0.43 | 0.46 | 0.35 | 0.32 | 0.22 |
| MAPE | 7.00 | 8.12 | 5.92 | 8.24 | 4.85 |
Statistics of the fit (molecules)

XDM with aug-cc-pVTZ; mean absolute errors in kcal/mol.

Pure functionals:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>BLYP</th>
<th>PW86</th>
<th>PBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>0.31</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>MA%E</td>
<td>9.8</td>
<td>11.8</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Hybrid and range-separated functionals:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>B3LYP</th>
<th>BH&HLYP</th>
<th>PBE0</th>
<th>CAM-B3LYP</th>
<th>LC-ωPBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>0.28</td>
<td>0.37</td>
<td>0.41</td>
<td>0.39</td>
<td>0.28</td>
</tr>
<tr>
<td>MA%E</td>
<td>6.7</td>
<td>7.8</td>
<td>10.2</td>
<td>8.3</td>
<td>7.8</td>
</tr>
</tbody>
</table>
Role of exchange

The exact exchange potential decays as $-1/r$ far from a molecule.

In terms of the exchange hole, h_X remains on the molecule as the reference point moves away from it.

The $-1/r$ asymptotic dependence was used to design the B88 exchange functional.

Functionals based on B88 or range-separated hybrids with the full exact-exchange limit (LC-ωPBE) give more accurate intermolecular exchange contributions.
Benchmark sets

Mean absolute errors in XDM binding energies with aug-cc-pVTZ

<table>
<thead>
<tr>
<th></th>
<th>LYP</th>
<th>PW86</th>
<th>B3LYP</th>
<th>LC-ωPBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S22</td>
<td>0.22</td>
<td>0.35</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>S66</td>
<td>0.22</td>
<td>0.29</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>HSG</td>
<td>0.20</td>
<td>0.17</td>
<td>0.12</td>
<td>0.23</td>
</tr>
</tbody>
</table>

See JCP **138** (2013) 204109 for additional data.
Graphite

Prediction of sublimation enthalpies

Benchmark:

- No reference wave-function data.
- Experimental **sublimation enthalpies** not directly comparable.

Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010

William Acree, Jr.
Department of Chemistry, University of North Texas, Denton, Texas 76203

James S. Chickos
Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121

(Received 14 January 2010; accepted 15 January 2010; published online 4 October 2010)

- 21 crystals, small systems, low polymorphism.
- Well known sublimation enthalpies at or below room temperature.
- Different intermolecular interactions.
\[\Delta H_{\text{sub}}(V, T) = E_{\text{el}}^{\text{mol}} + E_{\text{trans}} + E_{\text{rot}} + E_{\text{vib}}^{\text{mol}} + pV \\
- \left(E_{\text{el}}^{\text{crys}} + E_{\text{vib}}^{\text{crys}} \right) \]

- \(E_{\text{el}}^{\text{crys}} \longrightarrow \text{DFT+dispersion} \)
- \(E_{\text{el}}^{\text{mol}} \longrightarrow \text{DFT+dispersion, supercell} \)
- \(E_{\text{trans}} + E_{\text{rot}} + pV \longrightarrow 4RT (7/2RT) \)
- Rigid molecule approximation \(E_{\text{vib}}^{\text{mol}} = E_{\text{vib}}^{\text{crys}} \) for intramolecular
- Intermolecular \(E_{\text{vib}}^{\text{crys}} \longrightarrow \text{Dulong-Petit 6RT (5RT)} \)
- Zero-point vibrational contributions neglected
- Approximations tested for CO\(_2\) crystal. Average experimental accuracy \(\approx 1 \text{ kcal/mol} \).
Sublimation enthalpies

<table>
<thead>
<tr>
<th></th>
<th>XDM</th>
<th>DFT-D2</th>
<th>TS09</th>
<th>vdw-DF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kJ/mol)</td>
<td>B86b</td>
<td>PW86</td>
<td>PBE</td>
</tr>
<tr>
<td>MAE</td>
<td></td>
<td>4.81</td>
<td>6.50</td>
<td>5.35</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td>6.23</td>
<td>8.00</td>
<td>6.74</td>
</tr>
</tbody>
</table>

Relative error (%)

Prediction of crystal structures

- Vibrational Helmholtz free energy:

\[
F_{\text{vib}}(V, T) = \sum_{j=1}^{3n} \left[\frac{\omega_j}{2} + k_B T \ln \left(1 - e^{-\omega_j/k_B T} \right) \right]
\]

- Thermal pressure:

\[
p_{\text{th}} = -\frac{\partial F_{\text{vib}}}{\partial V}
\]

- Equilibrium condition:

\[
\frac{\partial E}{\partial V} = p_{\text{th}} = -p_{\text{sta}}
\]

Relax the crystal under negative pressure \(p_{\text{th}}\)
Crystal structures

![Graph showing relative error in crystal structures](image)

<table>
<thead>
<tr>
<th>Method</th>
<th>XDM</th>
<th>DFT-D2</th>
<th>TS</th>
<th>vdw-DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a.u.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B86b</td>
<td>0.12</td>
<td>0.06</td>
<td>0.20</td>
<td>0.11</td>
</tr>
<tr>
<td>PW86</td>
<td>0.20</td>
<td>0.11</td>
<td>0.10</td>
<td>0.31</td>
</tr>
<tr>
<td>PBE</td>
<td>1.31</td>
<td>1.58</td>
<td>4.40</td>
<td>1.88</td>
</tr>
</tbody>
</table>

A. Otero & E. Johnson (UC Merced)
Enantiomeric excess of amino-acids
Enantiomeric excess of amino-acids

A simple model

- Same solvation energies.
- Same crystal temperature effects.
- \(\Delta E = E_{dl} - E_l \)
- Predicted ee:

\[
ee = \frac{\beta^2 - 1}{\beta^2 + 1} \times 100
\]

\[
\beta = e^{-\Delta E/RT}
\]

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>DFT</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serine</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Histidine</td>
<td>93.5</td>
<td>93.7</td>
</tr>
<tr>
<td>Leucine</td>
<td>92.2</td>
<td>87.9</td>
</tr>
<tr>
<td>Alanine</td>
<td>67.1</td>
<td>60.4</td>
</tr>
<tr>
<td>Cysteine</td>
<td>69.2</td>
<td>58.4</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>70.6</td>
<td>51.7</td>
</tr>
<tr>
<td>Valine</td>
<td>62.3</td>
<td>44.1</td>
</tr>
<tr>
<td>Proline</td>
<td>0.0</td>
<td>39.7</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Enantiomeric excess

Enantiomeric Excess

\(\Delta E \) (kcal/mol)
An electride is an ionic substance in which a localized electron acts as an anion.

Existing electrides require a cage like structure to stabilise the cation: crown ethers and cryptands.

High magnetic susceptibilities, variable conductivities, very strong reducing agents.
Electrides

Use the NCI index to visualize the electrons - JACS 132 (2010) 6498.

Plots regions with low electron density and reduced density gradient.
Electrides

Graphite step edges

Graphite step edges
Summary

1. XDM implemented for gas-phase and solid-state.
2. Excellent benchmarking results.
3. Very accurate lattice energies and crystal geometries.
4. Accurate enough to predict ee in solution.
5. More: electrides, tribology,...

Download postg, QE+XDM, and CRITIC2 from:

http://faculty1.ucmerced.edu/ejohnson29